

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202103254

Smart Wireless Near-Infrared Light Emitting Contact Lens for the Treatment of Diabetic Retinopathy

Geon-Hui Lee, Cheonhoo Jeon, Jee Won Mok, Sangbaie Shin, Su-Kyoung Kim, Hye Hyeon Han, Seong-Jong Kim, Sang Hoon Hong, Hwanhee Kim, Choun-Ki Joo, Jae-Yoon Sim and Sei Kwang Hahn*

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202103254

Smart Wireless Near-Infrared Light Emitting Contact Lens for the Treatment of Diabetic Retinopathy

Geon-Hui Lee, Cheonhoo Jeon, Jee Won Mok, Sangbaie Shin, Su-Kyoung Kim, Hye Hyeon Han, Seong-Jong Kim, Sang Hoon Hong, Hwanhee Kim, Choun-Ki Joo, Jae-Yoon Sim, and Sei Kwang Hahn*

Supporting Information

Smart Wireless Near-Infrared Light Emitting Contact Lens for the Treatment of Diabetic Retinopathy

Geon-Hui Lee[†], Cheonhoo Jeon[†], Jee Won Mok, Sangbaie Shin, Su-Kyoung Kim, Hye Hyeon Han, Seong-Jong Kim, Sang Hoon Hong, Hwanhee Kim, Choun-Ki Joo, Jae-Yoon Sim, and Sei Kwang Hahn^{*}

Geon-Hui Lee, Su-Kyoung Kim, Hye Hyeon Han, Seong-Jong Kim, Sang Hoon Hong, Sei Kwang Hahn*

Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea. E-mail: skhanb@postech.ac.kr.

Cheonhoo Jeon, Jae-Yoon Sim

Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea.

Jee Won Mok, Choun-Ki Joo

Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul 06591, Korea.

Sangbaie Shin, Hwanhee Kim PHI BIOMED Co., 168, Yeoksam-ro, Gangnam-gu, Seoul 06248, Korea.

Supporting Display Items

Figure S1 | Schematic illustration and characteristics of surface-modified contact lenses.

a, Schematic illustration for the contact lens surface modification process. **b,** FT-IR analysis according to the contact lens surface treatment process. **c,** Contact angle change of contact lenses according to the surface treatment method. **d,** Oxygen permeability after surface treatment of contact lenses with HA-NH₂. **e,** Transmittance change with increasing wavelength according to the surface treatment method.

Figure S2 | **Characteristics of wireless energy transfer. a**, Schematic illustration of ASIC chip. **b**, OM image of ASIC chip. **c**, Power transfer efficiency (PTE) and power conversion efficiency (PCE) with increasing frequency change. **d**, PTE with increasing distance.

Figure S3 | Block diagram of pulse width modulation (PWM) circuit.

Figure S4 | The light intensity of far red/NIR micro-LED contact lens in water and in air by using an optical fiber. a, Center part of the contact lens. b, Edge part of the contact lens.

Figure S5 | **Current density and luminance of far red/NIR micro-LED. a,** Current density with increasing voltage applied to micro-LED. **b,** The luminance of micro-LED with increasing voltage.

WILEY-VCH

Figure S6 | Cornea safety shown by fluorescein staining.

Figure S7 | Optical microscopic images for the assessment of corneal thickness.

Figure S8 | Tear volume assessment by Schirmer's test.

Figure S9 | Cell viability with increasing voltage for light (670 nm) intensity under the high glucose (30 mM) environment (n = 5).

a

Figure S10 | a, Western blot image and analysis for the expression of b, GFAP, c, C3, d, COX2, e, VEGF, f, vimentin, g, ICAM-1 and β -actin as a control in the retina after treatment with wired LED contact lenses for 8 weeks.

Figure S11 | Immunohistochemical images for C3 and COX2 according to the light intensity (40, 80, 160, and 320 μ W).

Figure S12 | Immunohistochemical images for GFAP, VEGF, and vimentin according to the light intensity (40, 80, 160, and 320 μ W).

Figure S13 | The number of neovascularization and hemorrhage site.

Figure S14 | The retina thickness of diabetic rabbits (OD) with and (OS) without wireless LED contact lens treatment (n = 3).

Figure S15 | Dot blot analysis of a) VEGF, b) ICAM-1, c) VCAM-1, d) IL-6, and e) IL-8 in the vitreous for the normal, diabetic retinopathy (DR), and the treated groups of OS and OD with wireless LED contact lenses for 8 weeks (n = 2).

Figure S16 | Immunohistochemical images for C3 and CD34 after treatment of wireless LED contact lenses (light intensity: $120~\mu W$).

Figure S17 | Immunohistochemical images for COX2, GFAP and ICAM after treatment of wireless LED contact lenses (light intensity: $120~\mu W$).

Figure S18 | Immunohistochemical images for VEGF and vimentin after treatment of wireless LED contact lenses (light intensity: $120~\mu W$).

Table S1 | The purpose, pros and cons of surgery, laser treatment, and LED contact lens.

	Purpose	Pros	Cons	ref
Surgery	Treatment of secondary complications Photocoagulation	Clear vision recovery Neovascular growth factors reduction Surgically reattachment of detached retinas Significant decrease of the	Severe complications by vitreous surgery in diabetic eyes Secondary complications treatment of a primarily microvascular disease Possibility of retinal ischemia and the increased neovascular stimulus Painful treatment	[2,3]
treatment	treatment of neovascular site	proliferative retinopathy and macular edema	 Moderate visual loss by restricting the visual fields and nyctalopia Other side effects including glare, exudative retinal detachment, elevated intraocular pressure, and retinal fibrosis. 	
LED contact lens	Photobiomodulatory prevention of neovascularization	 Preventing the cause of diabetic retinopathy Patient compliance On-demand daily life application 	 Glare while using LED contact lens Minimal effect on the severe diabetic retinopathy 	This work

^[1] H. Helbig, Surgery for diabetic retinopathy. Ophthalmologica 2007, 221, 103-111.

^[2] C. C. Bailey, J. M. Sparrow, R. H. B. Grey, H. Cheng, The national diabetic retinopathy laser treatment audit III. Clinical outcomes. *Eye* **1999**, 13, 151-159.

^[3] G. E. Lang, Laser Treatment of Diabetic Retinopathy. *Diabetic Retinopathy* **2007**, 39, 48–68.